Analysis of Size-Effects in the Miniaturized Deep Drawing Process

Author:

Justinger H.1,Hirt Gerhard2

Affiliation:

1. Institute of Metal Forming

2. RWTH Aachen University

Abstract

With the increasing trend towards miniaturization and the enhanced demand for small components, reliable processes for mass production are needed. Today the deep drawing process is already used to produce large numbers of small parts (diameter < 1 mm) at low costs per part. But a better understanding of the process in relation to miniaturization is required to improve process stability, because several aspects of the process change when scaled down. For example, product accuracy and process parameters can be influenced by changing the ratio of surface to volume or the ratio of grain size to foil thickness. For the analysis of these effects experiments with geometrically scaled deep drawing tool sets from 8 mm to 1 mm punch diameter have been carried out, using CuZn37 foils in different annealed conditions and a foil thickness ranging from 0.3 mm to 0.04 mm. Additionally, the deep drawing process is simulated via FE-methods to consider influences that cannot be measured using the available experimental setup, such as temperature conditions resulting from the heat generated due to plastic dissipation and friction.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3