Osteoblast Proliferation and Morphology Analysis on Laser Modified Hydroxyapatite Surfaces: Preliminary Results

Author:

Teixeira S.1,Queiroz A.C.2,Monteiro F.J.3,Ferraz M.P.4,Vilar Rui5,Eugénio S.6

Affiliation:

1. INEB - Instituto de Engenharia Biomédica

2. Laboratório de Biomateriais

3. Universidade do Porto

4. Instituto de Engenharia Biomédica (INEB)

5. Instituto Superior Tecnico IST, Universidade Técnica Lisboa

6. ICEMS - Instituto de Ciência e Engenharia de Materiais e Superficies

Abstract

Biocompatibility has long been associated with surface microtopography, microtexture and microchemistry. The surface topography ultimately affects the nature and the strength of the interactions that occur at biomaterial-biological environment (cell adhesion, mobility, spreading and proliferation). Thus, it is necessary to produce and work with controlled microtopographical surfaces that present reproducible microdomains of a dimension similar to that of the biological elements of interest (for instance, cells). [1] There are a number of substrates that already have been studied (such as silicone, polystyrene, poly-L-lactic acid and titanium coated polystyrene) in terms of surface topography. [2] However, few studies are related to hydroxyapatite substrates. As it is well established, hydroxyapatite is a well known ceramic that is extremely used in medical applications, namely implants and coatings. In this work, the surface topography of dense hydroxyapatite substrates was altered by using KFr excimer laser. Excimer lasers produce high-intensity, pulsed ultraviolet radiation and are especially well suited for materials processing due to their large beam cross-section area, which permits using mask projection technologies to process relatively large areas in a single step.[3]

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3