Affiliation:
1. INEB - Instituto de Engenharia Biomédica
2. Laboratório de Biomateriais
3. Universidade do Porto
4. Instituto de Engenharia Biomédica (INEB)
5. Instituto Superior Tecnico IST, Universidade Técnica Lisboa
6. ICEMS - Instituto de Ciência e Engenharia de Materiais e Superficies
Abstract
Biocompatibility has long been associated with surface microtopography, microtexture and microchemistry. The surface topography ultimately affects the nature and the strength of the interactions that occur at biomaterial-biological environment (cell adhesion, mobility, spreading and proliferation). Thus, it is necessary to produce and work with controlled microtopographical surfaces that present reproducible microdomains of a dimension similar to that of the biological elements of interest (for instance, cells). [1] There are a number of substrates that already have been studied (such as silicone, polystyrene, poly-L-lactic acid and titanium coated polystyrene) in terms of surface topography. [2] However, few studies are related to hydroxyapatite substrates. As it is well established, hydroxyapatite is a well known ceramic that is extremely used in medical applications, namely implants and coatings. In this work, the surface topography of dense hydroxyapatite substrates was altered by using KFr excimer laser. Excimer lasers produce high-intensity, pulsed ultraviolet radiation and are especially well suited for materials processing due to their large beam cross-section area, which permits using mask projection technologies to process relatively large areas in a single step.[3]
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献