Superalloy Technology - A Perspective on Critical Innovations for Turbine Engines

Author:

Schafrik Robert1,Sprague Robert1

Affiliation:

1. GE Aviation

Abstract

High temperature structural materials, such as nickel-based superalloys, have contributed immensely to societal benefit. These materials provide the backbone for many applications within key industries that include chemical and metallurgical processing, oil and gas extraction and refining, energy generation, and aerospace propulsion. Within this broad application space, the best known challenges tackled by these materials have arisen from the demand for large, efficient land-based power turbines and light-weight, highly durable aeronautical jet engines. So impressive has the success of these materials been that some have described the last half of the 20th century as the Superalloy Age. Many challenges, technical and otherwise, were overcome to achieve successful applications. This paper highlights some of the key developments in nickel superalloy technology, principally from the perspective of aeronautical applications. In the past, it was not unusual for development programs to stretch out 10 to 20 years as the materials technology was developed, followed by the development of engineering practice, and lengthy production scaleup. And many developments fell by the wayside. Today, there continue to be many demands for improved high temperature materials. New classes of materials, such as intermetallics and ceramic materials, are challenging superalloys for key applications, given the conventional wisdom that superalloys are reaching their natural entitlement level. Therefore, multiple driving forces are converging that motivate improvements in the superalloy development process. This paper concludes with a description of a new development paradigm that emphasizes creativity, development speed, and customer value that can provide superalloys that meet new needs.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3