Stress-Strain Response in SiC/SiC Composites under Cyclic Loading

Author:

Ohgi Jun Ji1,Tanaka S.1,Kuramoto T.1,Suzuki M.2,Goda Koichi1

Affiliation:

1. Yamaguchi University

2. Ube Materials Industries Ltd.

Abstract

The tension-tension fatigue tests for SiC/SiC composites were performed under the conditions that the maximum load Pmax was 80-90% to the fracture load of the tensile tests and the stress ratio was Rσ = 0.5. The composites exhibited a width in stress-strain hysteresis loop under one load cycling. In some cases the mean strain εmean gradually increase with increasing in number of cycles. These variations would reflect the developments of the fatigue damage at the fiber/matrix interface during the cyclic loading process. The pull-out lengths of the fibers for the fatigued- and not fatigued-specimens were measured through the SEM observations after the tensile test. In all materials, the average pull-out length of fibers in fatigued material was larger than in not fatigued material because the cyclic loading affected on the fiber/matrix interfacial strength.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3