Thermal and Cold Spray: Recent Developments

Author:

Fauchais Pierre1,Montavon Ghislain1

Affiliation:

1. Université de Limoges

Abstract

Thermal spraying consists in a technology aiming at producing coatings whose thicknesses range from 10 μm to a few millimeters onto mechanical components to confer them specific and unique functional properties, such as wear and corrosion resistances, friction coefficient adaptation, thermal and electrical insulation, biocompatibility, repair, etc., among the principals. Thermal spraying consists in injecting in a viscous enthalpic jet (animated by a momentum) powder with particles which average size ranges from 0.01 to 100 μm. These particles are melted and simultaneously accelerated towards the surface of the part to be covered. They form, after impact, spreading and solidification, near-circular lamellae the stacking of which form the coating. Due to the versatility of the available processes exhibiting a wide range of enthalpic and momentum contents, virtually any kind of material exhibiting congruent melting behavior can be processed, from alloys and ceramics to polymers, ever since its melting temperature differs from its vaporization or decomposition temperature by at least 300 K and that it can be processed previously under the form of powder particles or wires. Thermal spray techniques offer the unique capability to manufacture a large variety of coatings on components of a large variety and geometry. However, thermal spraying constitutes a special process for which the coating service properties derive mostly from the structure and indirectly from the selection of the operating parameters. Very significant improvements over the past years permitted to diagnose the in-flight particle characteristics, mostly in terms of velocity and temperature. Recently, these new capabilities have made possible the development of on-line process controls. This should participate to a drastic increase in coating reliability. In convetntional thermal spraying processes, a pulverulent feedstock (i.e., powder particles) is injected within the plasma jet via a carrier gas. This approach does not permit to process small diameter particles; i.e., nano-sized particles, which could permit to form finely grained coatings. Replacing gas by liquid to carry particles offer the unique possibility to process nano-sized particles. Cold gas spraying may appear as an alternative process to reach the same goal. Indeed, thermal spray processes experienced very significant developments over the past years, opening new doors to manufacture coatings with a high reliability and superior properties. This papepr indend at presenting some of those developments.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3