Fretting Fatigue Phenomena on an all Aluminium Alloy Conductor

Author:

Boniardi Marco1,Cincera Silvia1,D'Errico Fabrizio1,Tagliabue Chiara2

Affiliation:

1. Politecnico Di Milano

2. Hammer S.r.l.

Abstract

This paper concerns about a failure analysis of an electric all aluminum alloy conductor (AAAC) damaged and broken for fretting fatigue phenomena induced by aeolian vibrations. Life of electric conductors is often reduced by various degradation mechanisms such as repeated bending, fluctuating tension, distortion, fatigue, wear and corrosion phenomena. However the main limiting factor of the electrical conductors is related to aeolian vibrations in the high frequency range (between 5 to 50 Hz). Conductor oscillations may lead to fretting fatigue problems (otherwise called fretting wear) caused by wind excitation, mainly in the suspension clamp regions, spacers or other fittings. The induced aluminium wire fracture imply a drastic reduction in the transmission line service. Vibration dampers are considered the most effective method to extend service life of electric conductors, as they are the means to reduce fretting damage of aluminium wires. The aim of the present work is to investigate the failure of an AAAC conductor of a 400kV overhead transmission line (twin conductors) located in Touggourt Biskra (Algeria); the damaged and broken conductors were operated in-service only for six months without spacers or dampers. Three different types of conductors have been taken as experimental samples: the in-service broken conductor, another in-service damaged conductor and a new conductor from warehouse as terms of comparison. Samples have been analysed to identify the root cause of the failure and to verify the conformity of the conductor elements to the international standards. The investigation has outlined the morphology of the fretting damage: in all cases the fractured wires have shown typical static deformation marks and dynamic fretting wear tangential marks associated with intense presence of Al2O3 debris.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of the effect of shot peening residual stress on fretting fatigue behaviour;International Journal of Fatigue;2023-11

2. Temperature and force characterization of an optical sag sensor for overhead line monitoring;2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2023-05-22

3. Life prediction of 6201-T81 aluminum alloy wires under fretting fatigue and variable amplitude loading;Tribology International;2023-05

4. Overhead conductors;Fretting Wear and Fretting Fatigue;2023

5. Design of an optical sensor with varied sensitivities for overhead line sag, temperature and vibration monitoring;2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3