Modeling Sheet Metal Integrated Production Planning for Laser Cutting and Air Bending

Author:

Verlinden Bert1,Cattrysse Dirk1,Duflou Joost R.1,Van Oudheusden Dirk1

Affiliation:

1. Katholieke Universiteit Leuven

Abstract

Over the past few years both sheet metal process planning and production planning issues received increased attention. For process planning of the laser cutting process, nesting algorithms are developed in order to decrease the waste material. Additionally, algorithms are available for path planning, i.e. determining the best sequence for cutting the different parts. Production planning is mainly performed based on the ability to fill a sheet. For air bending, process planning focuses on bend sequencing and tool selection, while production planning optimization aims at minimizing time consuming setups between the different production layouts at the press brake. However, when integrating both processes, the benefits from individual optimization counteract one another: good nestings at the laser machine can create additional setups at the press brake, hence increasing the makespan. An integrated approach is proposed to verify whether this problem can be solved by already taking into account possible setups at the press brake in the early nesting stage. Integration of both processes aims at an optimal combination of parts on a sheet and minimization of the setups at the press brake. In this paper, an overview of a modeling effort addressing both goals is proposed. When combining parts on a sheet, preference is given to parts requiring the same production layout at the press brake. If this is impossible, production layouts with low changeover times are preferred. Industrial cases are used to verify the applicability of the proposed model. The results are compared to a reference approach where nesting is performed with dedicated software and planning for air bending is based on an operator’s experience. Compared to this reference approach, a makespan reduction and a setup time reduction can be observed. The planning is generated almost instantaneously and no additional sheets are required compared to the reference approach. Future research will focus on expanding the model and verifying its applicability on a larger data-set.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3