A Thermodynamic Approach to Long-Term Deformation and Damage for Polymeric Materials in Hygrothermal Environment

Author:

Chen Xiao Hong1,Wang Su Su1

Affiliation:

1. University of Houston

Abstract

In this paper, a thermodynamic approach is presented to model coupled fluid transport, heat transfer, long-term deformation and damage in polymeric materials. The well-known Gibbs free energy is expressed as a functional of stress, temperature and fluid concentration with damage being introduced as an internal state variable. Constitutive equations for nonlinear viscoelastic materials in hygrothermal environments are derived in memory functional forms. The kinetics of damage evolution induced by stress, temperature and fluid is described by a damage function with thermodynamic driving force. Governing equations for mass and heat transfer are obtained from transport laws relating fluid and heat fluxes to gradients of chemical potential difference and temperature. A superposition principle of time, temperature, fluid concentration, stress, and aging is proposed so that long-term property functions may be derived from momentary master curves by horizontal and vertical shifting. The approach provides a theoretical framework for evaluating longterm behavior of polymeric materials in hygrothermal environments from short-term experiments.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of imaging fiber bundle coupling technique in IR system;SPIE Proceedings;2017-02-10

2. Nonlinear electro-thermo-viscoelasticity;Acta Mechanica;2009-09-03

3. Coupled hygro-thermo-viscoelastic fracture theory;International Journal of Fracture;2007-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3