Microstructures, Properties and In Situ Toughening of Rapidly Solidified Al2O3/YSZ Composite Ceramics Prepared by Combustion Synthesis

Author:

Zhao Zhong Min1,Zhang Long1,Song Yi Gang2,Wang Wei Guo3

Affiliation:

1. Mechanical and Engineering College

2. Mechanical Engineering College

3. Shijiazhuang Mechanical Engineering College

Abstract

The large-scale Al2O3/YSZ ceramic plates were prepared by combustion synthesis under high gravity, the ceramics were mainly composed of random-oriented rod-shaped grains, and within the rod-shaped grain aligned nano-submicron YSZ fibers were embedded. Compared to the high-performance directionally solidified ceramics, the hardness, flexural strength and fracture toughness of the eutectic ceramics obtained in the experiment increased by 40.7~55.1%, 9.6~26.0% and 172.0~240.0%, respectively. The increase in hardness and strength of the ceramics could be attributed to nano-submicron YSZ fibers and inter-phase spacing and the refinement of the eutectic grains; meanwhile, high-energy, large-angle boundaries between rod-shaped grains could introduce strong toughening mechanisms involving crack-bridging and pull-out of rod-shaped eutectics.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Full-composition-gradient in-situ alloying of Cu–Ni through laser powder bed fusion;Additive Manufacturing;2024-04

2. Research and Application of Functionally Gradient Materials;IOP Conference Series: Materials Science and Engineering;2018-08-07

3. Review of melt casting of dense ceramics and glasses by high gravity combustion synthesis;Advances in Applied Ceramics;2013-04

4. Combustion Synthesis: An Update;Ceramics and Composites Processing Methods;2012-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3