Bearing Fault Detection Using Higher-Order Statistics Based ARMA Model

Author:

Li Fu Cai1,Ye Lin2,Zhang Gui Cai1,Meng Guang1

Affiliation:

1. Shanghai Jiao Tong University

2. The University of Sydney, Laboratory of Smart Materials and Structures (LSMS)

Abstract

Impulse response provides important information about flaws in mechanical system. Deconvolution is one system identification technique for fault detection when signals captured from bearings with and without flaw are both available. However effects of measurement systems and noise are obstacles to the technique. In the present study, a model, namely autoregressive-moving average (ARMA), is used to estimate vibration pattern of rolling element bearings for fault detection. The frequently used ARMA estimator cannot characterize non-Gaussian noise completely. Aimed at circumventing the inefficiency of the second-order statistics-based ARMA estimator, higher-order statistics (HOS) was introduced to ARMA estimator, which eliminates the effect of noise greatly and, therefore, offers more accurate estimation of the system. Furthermore, bispectrums of the estimated HOS-based ARMA models were subsequently applied to get clearer information. Impulse responses of signals captured from the test bearings without and with flaws and their bispectra were compared for the purpose of fault detection. The results demonstrated the excellent capability of this method in vibration signal processing and fault detection.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3