Affiliation:
1. Materials Center Leoben Research GmbH
2. Vienna University of Technology
3. AMAG rolling G,bH
Abstract
Natural aging during storage of Al-Mg-Si alloys at room temperature can significantly reduce the maximum strengthening potential (T6) during artificial aging and, therefore, is a key topic in aluminium research and industry. Many different strategies to understand and reduce the negative effect of natural aging have been investigated during the last decades, including analysis of different thermal pre-treatments and considering the effect of different microalloying elements. From these investigations, the vacancy evolution and the formation of clusters containing Mg and Si were found to be the governing aging mechanisms behind natural aging. In this work, we present a model to simulate and predict the behavior of these alloys when subjected to room temperature aging after solutionizing and demonstrate the effects of different thermal routes and chemical composition variations. In the implemented model, the evolution of excess quenched-in vacancies and the effect of solute vacancy traps are considered. Special emphasis is placed on co-cluster formation and its contribution to strengthening. The thermokinetic software MatCalc is used for the simulations and the results of the simulations are validated by experimental investigation.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献