Affiliation:
1. Instituto Tecnológico de Aeronáutica - ITA
2. Instituto de Estudos Avançados
Abstract
As aircraft and thermoelectric turbine blades work in aggressive environments (high temperatures and pressures), they are exposed to oxidation reactions. Ceramic coatings are employed to increase the turbine work temperature (improving its performance) and a bond coat (BC), base of particulate material of Ni-Cr-Al powders, which assure a good adhesion, gradual decrease in thermal expansion coefficient between the metallic substrate and the ceramic top coat, avoiding the oxidation effect in the metallic substrate. This research aims the study and comparison of two different deposition process routes of particulate materials of BC (MCrAlY) on AISI 316 stainless steel substrate. In the first case, the BC powder was pre-deposited by segregation method and irradiated by a CO2laser beam. In the second case, laser surface texturing was done on the stainless steel surface by a Yb: fiber laser beam, the BC was deposited by the same method, and further, irradiated by a CO2laser beam. The main focus of this work was to evaluate the resulting interface for both mentioned cases. For this propose, characterizations were made using the techniques of optical microscopy and roughness measurements. In the first case, homogenous layers of bond coat were obtained. Optical microscopy suggest the formation of a metallurgic bonding between the substrate and the MCrAlY. For the laser surface texturing, the surface roughness can be adjusted by the laser beam parameters.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献