Spark Plasma Sintering and Strength Behavior under Compressive Loading of Mg-PSZ/Al2O3-TRIP-Steel Composites

Author:

Krüger Lutz1,Grützner Steffen1,Decker Sabine1,Schneider Ines2

Affiliation:

1. Technische Universität Bergakademie Freiberg

2. Bundeswehr Research Institute for Materials

Abstract

Composite materials, which consist of a metastable austenitic TRIP-steel matrix (CrMnNi TRIPsteel; TRansformation Induced Plasticity) reinforced by alumina particles (25 vol.% ceramic, designated as AT 25/75) and reinforced by alumina and MgO partially stabilized zirconia particles (Mg-PSZ) (35 vol.% ceramic, designated as AT 25/75 + MgPSZ) were synthesized through spark plasma sintering (SPS). In the AT 25/75 + MgPSZ, the steel particles were mainly surrounded by alumina. Hence, mostly steel/alumina and alumina/MgPSZ interfaces existed. The mechanical behavior of the as-sintered samples was characterized by compression tests at room temperature and 40 °C and in a range of strain rates between 103s-1and 103s1. The influence of the ceramic content, strain rate and temperature on TRIP-effect of the steel matrix was investigated. Due to the increasing ceramic volume fraction, AT 25/75 + MgPSZ exhibits the highest compressive yield strength under all loading conditions and no strain rate sensitivity. This composite showed no measurable TRIP-effect, due to the low fracture strain. The deformation-induced α’martensite within the steel particles in pure steel and AT 25/75 primary depends on the testing temperature and the strain rate. This is attributed to an increase of stacking fault energy with rising temperature. High strain rates cause adiabatic heating, counteracting the martensitic transformation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3