Influence of Two-Step Sintering on Ceramic Nanocomposites Microstructure

Author:

Rodrigues Leandro1,Chinelatto Adilson Luiz1,Chinelatto Adriana Scoton Antonio1

Affiliation:

1. Universidade Estadual de Ponta Grossa

Abstract

Two-step sintering has been able to produce fully dense bodies and with controlled grain size, without pressure during sintering. In this study, it was studied the sintering behavior of alumina-5% vol zirconia powders submitted to high energy milling. For this, the mixture of 5% vol of Y2O3partially stabilized zirconia and 95% vol alumina powder was performed by high-energy ball milling (Spex 8000) with a ball ratio: mass of material at 7:1, in a steel vial with balls of steel, in milling times from 0 to 7 hours. The milled powders were characterized by X-ray fluorescence (XRF) and X-ray diffraction (XRD). After milling, the powders were uniaxially pressed and two-step sintered with heating at a temperature of 1500 oC for 5 minutes, cooling until 1450°C and then sintering at this temperature for 2 hours. The sintered composites were analyzed by X-ray diffraction, apparent density and scanning electron microscopy. The results were compared with the conventional sintering and showed that the microstructure of the nanocomposites appears more refined and homogeneous when they are sintered in steps.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3