Affiliation:
1. Wolfspeed, a Cree Company
2. Cree, Inc.
Abstract
In this work, aggregate epitaxial carrot distributions are observed at the crystal, wafer and dislocation defect levels, instead of individual extended carrot defect level. From combining large volumes of data, carrots are observed when both threading screw dislocations (TSD) and basal plane dislocations (BPD) densities are locally high as seen in full wafer maps. Dislocation density distributions in areas of carrot formation are shown, and suggest TSD limit the formation of carrots in regions containing BPD. These data also add support for mechanisms requiring the need for both dissociated BPD and TSD for carrot formation.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献