Study of Thermal Conductivity due to Spins in One-Dimensional Spin Systems AFeX3 (A=Rb, Cs; X=Cl, Br)

Author:

Tasomara Riesma1,Kawamata T.2,Matsuoka Y.2,Sudo H.2,Naruse K.2,Ohno M.2,Nagasawa H.2,Hagiya Y.2,Sasaki T.2,Risdiana 1,Koike Yoji2

Affiliation:

1. Universitas Padjadjaran

2. Tohoku University

Abstract

Large contributions of the thermal conductivity due to spins, κspin, in low-dimensional spin systems are expected to be utilized as highly thermal conducting materials. One-dimensional spin system RbFeCl3 with ferromagnetic chains and CsFeBr3 with antiferromagnetic chains in magnetic fields have been prepared in order to observe the contribution of κspin to the value of thermal conductivity. The temperature dependence of the thermal conductivity parallel to spin chains along the c-axis, κ//c, of RbFeCl3 enhanced around 3 K and 10 K by the application of magnetic field. In the thermal conductivity perpendicular to c-axis, κc, of RbFeCl3, on the other hand, it has been found that only one peak around 3 K is enhanced by the application of magnetic field. Since κc is mainly owing to the thermal conductivity due to phonons, κphonon, it has been concluded the peak of κ//c around 10 K in magnetic fields is due to the contribution of κspin. For CsFeBr3, it has been found that κ//c shows two peaks around 3 K and 25 K while κc shows one peak around 12 K in zero field. This indicates that there is a marked contribution of κspin to κ//c. κ However, the details of the marked contribution of κspin to κ//c are not yet clear, since κ//c has been suppressed by the application of magnetic field in contrast with the enhancement of the thermal conductivity in RbFeCl3.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3