Carbon-Based Nanomaterials for Drugs Sensing: A Review

Author:

Kasinathan Bavani1,Zawawi Ruzniza Mohd1

Affiliation:

1. Universiti Putra Malaysia

Abstract

Carbon-based nanomaterials such as graphene, carbon nanotubes, carbon nanofibers and nanodiamonds have been fascinated considerable attention as promising materials for drug sensing. These materials have tremendous amount of attraction due to some extraordinary features such as excellent electrical and thermal conductivities as well as high mechanical strength. Hence, these nanomaterials have been used extensively in sensor technology in order to achieved desired sensitivities. To date, carbon based nanomaterials have been exploit in the development of various drug sensing due to their simple preparation methods, and cost effectiveness. The aim of this review is to focus upon carbon based nanomaterials predominantly on drugs sensing applications. This review has been written in summary form including properties, fabrication method, and analytical performances.Abbreviation:Au, Gold; CNFs, Carbon Nanofibers; CNTs, Carbon Nanotubes; CVD, Chemical Vapour Deposition; D-, Dextrorotatory enantiomer; D, Dimensional; DNase, deoxyribonuclease; ESD, Electrospinning deposition; GCE, Glassy Carbon Electrode; Gr, Graphene; GrO, Graphene Oxide; ILs, ionic liquids; L-, Levorotatory enantiomer; LOD, Limit of Detection; MTase, Methyltransferases; MW, Microwave; MWCNTs, Multi-walled Carbon nanotubes; NDs, Nanodiamonds; NPs, Nanoparticles; PECVD, Plasma Enhanced Chemical Vapour Deposition; RGO, Reduced Graphene Oxide; SPE, Screen-Printed Electrode; SPR, Surface Plasmon resonance; ssDNA, single-stranded DNA; SWCNTs, Single-walled Carbon nanotubes.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3