Characterization of Metal-PCMs for Thermal Energy Storage Applications

Author:

Sudheer R.1,Prabhu K. Narayan1

Affiliation:

1. National Institute of Technology Karnataka

Abstract

In recent years phase change materials have emerged to be ideal energy storage materials for their higher energy density over sensible heat storing materials. Use of phase change materials (PCM) have been successfully implemented at lower temperature applications with various organic compounds. On the other hand, high temperature applications have been solely dominated by various salts, their eutectics and mixtures as phase change materials. This work discusses the suitability of metals and alloys for thermal energy storage applications as the phase change material. Metals offer superior thermal conductivities with considerable energy density compared to salts. Here, two alloys namely, Sn-0.3Ag-0.7Cu (SAC) solidifying over 212-224°C and ZA8 (Zn-8%Al) solidifying over 378-405°C have been studied. Thermal analysis of PCMs using Computer Aided Cooling Curve Analysis (CA-CCA) and DSC technique were performed to predict the solidification path. In addition to this, Newtonian technique was employed to estimate the latent heat of fusion for these phase change materials. Cooling rate curves and Fraction Solid curves offered a better insight into their ability to receive and discharge heat over the concerned temperature range.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3