First-Principle Studies Al-Fe-Ti-Cr-Zn-Cu High Entropy Solid Solutions with Pressure-Induced

Author:

Wang Lan Xin1,Yao Shan1,Wen Bin2

Affiliation:

1. Dalian University of Technology

2. Yanshan University

Abstract

The structural properties, elastic properties, mechanical stability, and phase transition of equiatomic Al-Fe-Ti-Cr-Zn-Cu high entropy solid solutions from binary (Al-Fe) to hexanary (Al-Fe-Ti-Cr-Zn-Cu) composition with pressure-induced have been analyzed using density functional theory calculations. The results indicate that the lattice parameters decrease, the mass densities increase with the pressure-increased. The mechanically stability may improve with the pressure increased appropriately for ternary Al-Fe-Ti and quaternary Al-Fe-Ti-Cr. The Young’s modulus has nothing to do with the pressure-induced, but the bulk modulus increases with the pressure increased. The elastic properties were also calculated using Voigt-Reuss-Hill (VRH) approximations. The brittle and ductile properties were studied by Poisson’s ratios and the ratios of shear modulus to bulk modulus. The calculated results of the enthalpy indicate that the binary to hexanary high entropy solid solutions transform the FCC structure to the BCC structure at a certain pressure.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3