Approaches for Eliminating Bacteria Introduced during In Situ Bioleaching of Fractured Sulfidic Ores in Deep Subsurface

Author:

Ballerstedt Hendrik1,Pakostova Eva2,Johnson D. Barrie2,Schippers Axel1

Affiliation:

1. Federal Institute for Geosciences and Natural Resources (BGR)

2. University of Bangor

Abstract

The major objective of the EU Horizon 2020 project “BioMOre” is the technical realization of indirect in situ leaching of Kupferschiefer sandstone and black shale ore by a ferric iron lixiviant generated by a mixed culture of autotrophic, acidophilic, iron-oxidizing bacteria and archaea in a ferric iron-generating bioreactor (FIGB). These organisms could colonize the deeply buried geological formations even under anaerobic conditions as most are able to grow by coupling the reduction of ferric iron to the oxidation of reduced sulfur compounds in the absence of oxygen. Development of an inhibition protocol to eliminate these allochthonous microbial bioreactor populations subsequent to the completion of in situ bioleaching was therefore investigated. Column bioleaching experiments using a laboratory-scale FIGB confirmed not only that metals were solubilised from both the sandstone and shale ores, but also that significant numbers of bacteria were released from the FIGB. The efficacy of 13 different chemical compounds in inhibiting microbial iron oxidation has been tested at different concentrations in shake flask and FIGB-coupled columns. Iron-oxidation activity, microcalorimetrically-determined activity and ATP measurements, in combination with microscopic cell counts and biomolecular analysis (T-RFLP, qPCR), plate counts and most-probable-number (MPN), were used to monitor the inhibiting effects on the acidophiles. Complete inhibition of metabolic activity of iron-oxidizing acidophiles was achieved in the presence of 0.4 mM formate, 300 mM chloride, 100 mM nitrate, 10 mM of primary C6 to C8 alcohols, 100 mM 1-butanol, 100 mM 1-pentanol, 0.1 mM SDS or 0.35 mM benzoic acid. No inhibition was found for 0.6 mM acetic acid and 200 mM methanol. Based on these results a recipe for the chemical composition of the “decommissioning solution” is proposed.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3