Heat Flow and Defects in Semiconductors: beyond the Phonon Scattering Assumption

Author:

Estreicher Stefan K.1,Gibbons T. Michael1,Bebek M. Bahadir1,Cardona Alexander L.1

Affiliation:

1. Texas Tech University

Abstract

It is universally accepted that defects in materials scatter thermal phonons, and that this scattering is the reason why defects reduce the flow of heat relative to the defect-free material. However, ab-initio molecular-dynamics simulations which include defect dynamics show that the interactions between thermal phonons and defects involve the coupling between bulk (delocalized) and defect-related (localized) oscillators. Defects introduce Spatially-Localized Modes (SLMs) which trap thermal phonons for dozens to hundreds of periods of oscillation, much longer than the lifetimes of bulk excitations of the same frequency. When a phonon traps in a SLM, momentum is lost and the decay of localized phonons does not depend on the origin of the excitation but on the availability of receiving modes. This strongly suggests that carefully selected interfaces and/or δ-layers can be used to predict and control the flow of heat.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference26 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3