Abstract
Nickel substituted cobalt zinc nanoferrites (Co0.6Zn0.4NixFe2-xO4, x=0.2, 0.4, 0.6, 0.8 and 1.0) were successfully synthesised by sol gel method. FT-IR studies showed two absorption bands in the range of 400-600 cm-1corresponding to the M-O bond in the tetrahedral and octahedral clusters, respectively. Powder X-ray diffraction patterns revealed that all the samples had cubic structure with Fd-3m space group.The lattice constant was observed to increase with increase in nickel substitution, thus altering the unit cell volume. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Ni concentration upto x=0.4, and a decrease there after.These results could be explained using Neel's collinear two-sub-lattice model and three sub-lattice non-collinear model suggested by Yafet and Kittel. DC resistivity was found to decrease with increase in temperature due to semiconductor nature of nanoferrites. The catalytic activity was found to be maximum at x = 0.2 and further found to decrease with increase in nickel concentration
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献