Affiliation:
1. Risø National Laboratory
2. The University of British Columbia
Abstract
Extensive interfacial reactions are known to occur between Fe-Co based perovskite cathode materials and the standard solid oxide fuel cell (SOFC) yttria stabilized zirconia (YSZ) electrolyte. Thin films of gadolinia doped ceria (GDC) could be used as a diffusion barrier between the cathode and the electrolyte. The present work investigates spin coating thin diffusion reaction inhibiting films onto SOFC electrolytes. The chemical and structural evolution of ethylene glycol based precursor solution is studied by means of rheology, x-ray diffraction (XRD), high temperature XRD (HT-XRD), Fourier-transformed infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The studies show that cerium formate is formed as an intermediate resin. Thin films, up to 500 nm thick, of gadolinia doped ceria (GDC) are successfully produced by multiple spin coating of polymerized ethylene glycol derived solutions on 200 1m thick YSZ tapes. The GDC and YSZ interfacial surface morphology and film thickness are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). These films are shown to successfully prevent the creation of non-conducting reaction phases at the cathode-electrolyte interface by blocking interdiffusion.
Publisher
Trans Tech Publications, Ltd.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献