Affiliation:
1. University Paul Verlaine de Metz
2. University of Shanghai
Abstract
An experimental method using a specifically set-up is presented in order to investigate dry friction phenomena, which occurs in the cutting process at the tool chip contact, in a wide range of sliding speed. A ballistic set-up using an air gun launch is used to measure the friction coefficient for the steel/carbide contact between 15 m/s and 80 m/s. A series of tests are conducted according to the sliding velocity and the normal pressure. These measurements are also introduced in a finite element simulation. The focus of this work is to determine the relevance of the friction modeling in the finite element method of the high speed machining. Modeling results are compared with cutting forces measured on a similar experimental device, which can reproduce perfect orthogonal cutting conditions. Measurement of temperature fields during the cutting process complete the parameter required for modeling. The results show that in high cutting speed, the friction modeling usually used in the FE codes is limited and that novel formulations are needed.
Publisher
Trans Tech Publications, Ltd.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献