Application of Non-Destructive Technology in Evaluating Concrete to Sulfate Attack

Author:

Tang Xu Guang1,Xie You Jun1,Long Guang Cheng1

Affiliation:

1. Central South University

Abstract

The deterioration on sulfate attack was investigated both in physical crystallization and the chemical erosion. Specimens that suffered long-term immersion and dry-wet cycles in saturated sodium sulfate solution are compared to trace the physical attack. And the chemical erosion was conducted by comparing specimens which have been suffered long-term immersion in saturated sodium sulfate solution and saturated limestone solution. In the investigation, the non-destructive detecting indexes, such as the ultrasonic velocity, and the dynamic modulus of elasticity were measured. The permeability, the porosity and mechanical strength at 28-day age were measured. The flexural/compressive strength was measured after 90 wet-dry cycles. And then all the specimens were cut into cubes to take the measure of compressive strength. Based on the experiments, feasibility of various parameters, such permeability, relative dynamic modulus of elasticity, ultrasonic velocity and relative flexural/compressive strength, were investigated to evaluate the concrete deterioration. The results indicate that there is a close relationship between the deterioration by sulfate attack and concrete permeability, so the reduction of permeability is effective in promoting the resistance. The index of the resistance expressed by the dynamic modulus of elasticity ratio is comparable to that expressed by the relative flexural strength. A novel method was suggested in evaluating concrete by sulfate attack, namely, combined with some mechanical tests, the parameter of relative dynamic modulus of elasticity can be used to evaluate the deterioration; the permeability denoted as the amount of transporting charges within 6 hours can be used to evaluate the properties to sulfate attack.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference10 articles.

1. P K Metha, P J Monteiro: Concrete: Structure, Properties and Material (second edition) (New Jersey: Prentice-Hall, Inc., Englewood Cliffs, 1993).

2. M Santhanam, M D Cohen, J Oleek: Cement and Concrete Research, 2001, 31(6): 845-851.

3. John Bensted: Cement and Concrete Research, 2002, 32(2): 995-1000.

4. A Neville: Cement and Concrete Research, 2004, 34(8): 1275-1296.

5. CAO Zheng-liang, YUAN Xiong-zhou, XIN Feng, etc: Journal of Shenzhen University Science and Engineering, 2006, 23(3): 201-210.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3