Synthesis and Characterization of Bacterial Cellulose Nanocrystals and their PVA Nanocomposites

Author:

George Johnsy1,Bawa Amarinder S.1,Siddaramaiah 2

Affiliation:

1. Defence Food Research laboratory

2. Sri Jayachamarajendra College of Engineering

Abstract

Cellulose, the most widespread biopolymer, is known to occur in a wide variety of living species from the worlds of plants and microbial sources like bacteria. Bacterial cellulose produced by Gluconacetobacter xylinus in the form of long fibers can be acid hydrolyzed under controlled conditions to obtain nanocrystals. Such nanocrystals constitute a generic class of ‘green’ nanomaterial and have attained great importance in the field of polymer nanocomposites attributed to their superior properties. However, conventional sulfuric acid hydrolysis route provides cellulose nanocrystals with inferior mechanical and thermal properties. In this study, a hydrochloric acid (HCl) assisted top down approach has been adopted to synthesize bacterial cellulose nanocrystals, which is found to retain some of the natural properties of native cellulose even in nano-dimensions. The morphological parameters were analyzed using atomic force microscopy which confirmed the formation of nanocrystals. Using these novel nanocrystals, poly vinyl alcohol (PVA) nanocomposite films were prepared and characterized for elucidating their properties. The addition of nanocrystals has significantly improved the thermal stability and mechanical properties of PVA nanocomposites. Results of this study demonstrated that nanocrystals obtained by HCl have several advantages in the fabrication of high performance polymer nanocomposite films for food packaging applications.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3