Mechanical and Fatigue Performance Tests of Cast Aluminum Alloy ZL111 Adopted in Structure

Author:

Wang Yuan Qing1,Yuan Huan Xin1,Shi Yong Jiu1

Affiliation:

1. Tsinghua University

Abstract

Characteristics of aluminum alloys such as light weight, high strength-to-weight ratio and favorable corrosion resistance have brought about a bright application prospect in building structures. Wrought alloys are applicable to common beams and columns, while casting alloys can be fabricated as connectors in point-supported glass curtain wall and joints in spatial latticed structures on account of easy implement of moulding. Because of high strength, outstanding castability and remarkable mechanical properties after heat treatment, ZL111 in aluminum-silicon alloys is regarded as a desirable option. However, aluminum alloys are non-linear materials and their properties vary with casting and heat treatment modes. It is the well-marked distinction between aluminum alloy and ordinary carbon steel that special study on mechanical and fatigue performance is required. ZL111 raw materials were selected, with alloying agent and fabrication processes meeting the requirement of GB/T 1173-1995 standard. After T6 heat treatment process, test coupons were obtained by machining from raw materials. By utilization of electronic universal testing machine and cryogenic box, tensile tests at room temperature and low temperatures were performed. High-circle fatigue tests were carried out to obtain the fatigue performance of the material. Scanning electron microscope (SEM) was introduced to observe morphology of tensile and fatigue fractures. The tests revealed the relationship between mechanical property index and temperature, which indicated that the ZL111-T6 would increase in strength and plasticity. The microstructure of fractures validated and explained the macroscopic results. Furthermore, material strength at room temperature or low temperatures, stiffness and fatigue performance could satisfy bearing and normal serviceability requirement. Because of non existence of ductile-brittle transition temperature, superior corrosion resistance and outstanding castability, ZL111-T6 material is prone to fabricate complicated elements and joints withstanding cryogenic environment instead of carbon steel.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference75 articles.

1. 54.

2. 43.

3. 730.

4. 242.

5. 133.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3