A Novel Route to Prepare ZnO-SnO2 Nanocomposite with High Photocatalytic Activity

Author:

Zhang Mao Lin1,Li Long Feng1

Affiliation:

1. Huaibei Normal University

Abstract

A nanometer coupled oxide ZnO-SnO2was prepared by the fractional homogeneous co-precipitation route using urea as the latent precipitant under boiling reflux condition. The samples prepared from different initial concentrations of urea or at different calcination temperatures were characterized by X-ray diffration (XRD) or transmission electron microscopy (TEM). It was found that the coupled oxides ZnO-SnO2mainly consist of nanosized ZnO and SnO2, the calcination temperature had obvious effect on the phase composition and the crystal size of the samples obtained, and the precipitant concentration also had obvious effect on the oxide particles size and the production rate of ZnO. Moreover, their photocatalytic activity was investigated for the liquids-phase photocatalytic degradation of methyl orange (MO) in water under UV light irradiation.The coupled oxides showed better photocatalytic activity for the degradation of MO than the pure ZnO or SnO2.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3