Hydrogenated Amorphous Silicon-Based Thin Film Solar Cell: Optical, Electrical and Structural Properties

Author:

Hossain Mohammad Kamal1

Affiliation:

1. King Fahd University of Petroleum and Minerals

Abstract

Hydrogenated amorphous silicon (a-Si:H) has been developed as an important materials in thin film-based photovoltaic technologies because of considerable cost reduction as a result of low material consumption and low-temperature process. Among the materials used for thin film solar cells, amorphous silicon is the most important material in the commercial production. Despite of these benefits, the efficiency limit for a single band gap thin film based solar cell predicted by Shockley and Queisser (i.e. ~31%) has become a matter of challenge for current research community. Considering the thermodynamic behavior of a single threshold absorber in generating electricity from solar irradiance, this limit seems inevitable, and thus a tremendous investigation is now being carried out in different dimensions such as hot carrier generation, rainbow solar cell, multiple exciton generation, multiband absorber etc. Nonetheless, so far reported efficiency (ηlab~12%) provide enough room to improve and take challenge to reach to the highest value for a-Si:H based solar cell design. Further to improve architectural design as well as engineer the materials, it is indispensable to understand the optical, electrical and structural properties of aSi:H as an active layer. Here in this article, an attempt was taken into account to focus on such characteristics that affect the overall cell efficiency.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3