In Situ Characterization of Relevance of Surface Microstructure and Electrochemical Properties of Chalcopyrite to Adsorption of Acidianus manzaensis

Author:

Xia Jin Lan1,Zhu Hong Rui1,Wang Lei1,Liu Hong Chang1,Nie Zhen Yuan2,Zhao Yi Dong2,Ma Chen Yan2,Hong Cai Hao2,Zhen Xiang Jun3

Affiliation:

1. Central South University

2. Institute of High Energy Physics, Chinese Academy of Sciences

3. Chinese Academy of Sciences

Abstract

The in situ relevance of micro- structure and electrochemical properties of chalcopyrite to adsorption of thermoacidophilic bioleaching Archaea Acidianus manzaensis was studied. In this study, the electrochemical behavior of chalcopyrite was first investigated by cyclic voltammetry (CV) to get suitable initial reduction and oxidation potentials, at which electrochemical corrosions of chalcopyrite for several time were performed, respectively, to get specific surface micro-structures. The specific adsorption of A. manzaensis on the electrochemically corroded chalcopyrite surface was then comparatively studied. The changes of microstructure and chemical composition/speciation on the surface of chalcopyrite before and after electrochemical treatment and bio-adsorption was characterized by scanning electron microscopy/electron dispersive spectroscopy (SEM/EDS), and synchrotron radiation-based X-ray diffraction (SR-XRD) and Fe, Cu K-edge X-ray absorption near edge structure (XANES) spectroscopy. The results showed that the suitable initial oxidation and reduction of chalcopyrite electrode were at 0.67 V for 1h and -0.54 V for 10 min, respectively. After treated at 0.67V the surface of chalcopyrite became Cu-deficient with a composition of CuFe1.02S2.15, and bornite (Cu5FeS4) was detected. While after treated at -0.54V, the surface became Fe/S-deficient, with a composition of CuFe0.33S0.81, and a mass of chalcocite and some covellite were detected. Comparing to the original chalcopyrite, the adsorption capacity of A. manzaensis was increased on the surface of oxidation-treatment at 0.67 V, and decreased on the surface of reduction-treatment at -0.54 V. It clearly demonstrates the bornite-containing copper deficient chalcopyrite surface was more preferably adsorbed, whereas the chalcocite-containing Fe/S deficient chalcopyrite surface was less adsorbed by A. manzaensis, indicating the dependence of the specific adsorption of A. manzaensis upon the secondary minerals as well as Fe/S availability in the microstructure of chalcopyrite.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3