Effect of Gap Voltage and Pulse-On Time on Material Removal Rate for Electrical Discharge Machining of Al2O3

Author:

Moudood M.A.1,Sabur Abdus1,Ali Mohammad Yeakub1,Jaafar I.H.1

Affiliation:

1. International Islamic University Malaysia

Abstract

Electrical discharge machining (EDM) is a non-conventional machining technique which can be used to machine non-conductive ceramics. This technique removes materials from the workpiece by thermal energy exerted from series of electrical sparks. Using copper foil as assisting electrode (AE), machining of Al2O3 is done successfully. In this investigation, experiments were performed to study the effect of gap voltage and pulse-on time on material removal rate (MRR) for EDM of Al2O3. The results showed that the lowest and the highest values of gap voltage were 12 V and 14 V, respectively, with a fixed peak current of 1.1 A and pulse-on time of 8 μs. Beyond these two voltage values, material cannot be removed due to insufficient pyrolytic carbon layer generation. Similarly, pulse-on time is varied from 6 μs to 8 μs when gap voltage is fixed at 14 V and peak current at 1.1 A. MRR, in this case, is increased almost 20 times from a lowest value of 0.006 mm3/min to a highest value of 0.119 mm3/min for the specified gap voltage and pulse-on time.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of pulse Current and easiness of EDM in the hole making for strut cardiac stent CP-Ti-2;Advances in Materials and Processing Technologies;2024-01-23

2. A numerical investigation on material removal mechanism of electro discharge machining of non-conductive ceramics;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-03-04

3. Super Dielectric Based EDM Process for Drilling of Inconel 718;Materials and Manufacturing Processes;2020-10-16

4. Electro-Discharge Machining of Ceramics: A Review;Micromachines;2018-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3