The Effect of the Laser Surface Treatments on the Wear Resistance

Author:

Bitay Enikő1,Kovács Tünde2

Affiliation:

1. SAPIENTIA - Hungarian University of Transylvania

2. Budapest Polytechnic Faculty of Engineering

Abstract

In case of traditional surface-hardening processes (e.g. carburization), the wear resistance usually correlates with hardness, which means optimising these technologies could be based on testing the achieved hardness. In case of modern laser treatment technologies however – e.g. surface melting combined with surface alloys or laser scanning surface treatment followed by nitridation – it is unlikely to conclude wear resistance from the value of hardness. The reasons are the following: the hardness of surface melting combined with surface alloys (especially if alloyage is made using high hardness compound powders) depends on the remelting of the material and the particle size and distribution of the dispersed alloy. These same properties define wear resistance, but the values don’t necessarily correlate. In case of a compound phase dispersion in a softer base material, we can have outstanding wear resistance with moderate hardness. (e.g. bearing metals) The case is similar with scanning treatment combined with nitridation, which results in complicated structures. Due to the above, it is possible that in order to optimise these aforementioned technologies, we have to rely on examining wear resistance. In order to back this statement, we show the results of two typical experiments concerning these technologies.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3