Structure and Magnetic Properties of MgFe2O4 Nanoparticles Prepared by the Low-Temperature Solid-State Reaction Method

Author:

Sun Jian Rong1,Wang Zhi Guang1,Wang Yu Yu1,Wei Kong Fang1,Li Fa Shen

Affiliation:

1. Chinese Academy of Sciences

Abstract

MgFe2O4 nanoparticles with different grain sizes were prepared by the low-temperature solid-state reaction method. The X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), superconducting quantum interference devices (SQUID) and 57Fe Mössbauer spectroscopy (MS) were used to characterize the structure, magnetic properties and surface anisotropy of nanoparticles. Oxygen parameters suggested that lattice distortion was decreased with reducing particle size. In comparison with the bulk material, smaller saturation magnetization (Ms) and larger coercive force (Hc) for nanoparticles were observed. The critical sizes for transition from multidomain to single domain and for superparamagnetic transition were estimated to be 25 nm and 28 nm, respectively. In summary, the fabricating conditions for the low-temperature solid-state reaction method are studied to improve Ms and reduce Hc of the films, making the films suitable to the applications of the magnetic targeted drug.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3