Affiliation:
1. Northrop Grumman Electronic Systems
2. APEI Inc.
3. U.S. Army Research Laboratory
Abstract
High-voltage vertical-junction-field-effect-transistors (VJFETs) are typically designed normally-on to ensure low-resistance voltage-control operation at high current-gain. To exploit the high-voltage/temperature capabilities of VJFETs in a normally-off voltage-controlled switch, high-voltage normally-on and low-voltage normally-off VJFETs were connected in the cascode configuration. The cascode gate’s threshold voltage decreases from 2.5 V to 2 V as the temperature increases from 25°C to 225°C, while its breakdown voltage increases from -23 V to -19 V. At 300°C, the drain current of the cascode switch is 21.4% of its 25°C value, which agrees well with the reduction of the 4H-SiC electron mobility with temperature. The VJFET based all-SiC cascode switch is normally-off at 300°C, with its threshold voltage shifting from 1.6 V to 0.9 V as the temperature increases from 25°C to 300°C. This agrees well with the measured reduction in VJFET built-in potential. Finally, the reduction in cascode transconductance with temperature follows that of the theoretical 4H-SiC electron mobility. Overall, the measured thermally-induced cascode parameter shifts are in excellent agreement with theory, which signifies fabrication of robust SiC VJFETs for power switching applications.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献