Microstructure Features of Cold-Sprayed NiCoCrAlTaY Coating and its High Temperature Oxidation Behavior

Author:

Li Chang Jiu1,Li Yong2,Xing Lu Kuo1,Yang Guan Jun1,Li Cheng Xin1

Affiliation:

1. Xi’an Jiao Tong University

2. Xi'an Thermal Power Research Institute

Abstract

Superalloy coating was deposited by cold-spraying using a commercial NiCoCrAlTaY powder. The coating microstructure was investigated by scanning electron microscopy and X-ray diffraction to reveal the change of the b-NiAl phase in the as-received powder particle during coating deposition. The oxidation behavior of the cold-sprayed MCrAlY coating and its microstructural evolution during the isothermal treatment were examined. The results show that significant microstructural change occurred to NiCoCrAlTaY superalloy during cold spraying and the thermal exposure. The intensive plastic deformation upon high velocity impact of spray particles results in transformation of b-NiAl to the matrix phase, forming metaltable b-NiAl depletion zones (b-PDZs) which are distributed around the boundaries of deposited particles in the coating. The central part of the deposited particles with limited deformation retained the original phase constitutions of the starting powder. The b-phase with fine grains is re-precipitated uniformly in the areas in b-PDZs in the as-sprayed coating during high temperature exposure. A stable Al2O3 scale was formed on cold-sprayed NiCoCrAlTaY during oxidation possibly due to active b-PDZs on the top surface of the coating.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3