Transformation of Structure in Carbon Steel Specimen under Loading by Mach Stem, Formed in Preliminary Compressed High Explosive Charge TG-40

Author:

Bataev Ivan A.1,Balagansky Igor A.1,Bataev Anatoly1,Hokamoto Kazuyuki2

Affiliation:

1. Novosibirsk State Technical University

2. Kumamoto University

Abstract

A structure of a carbon steel specimen after explosive loading is investigated. The loading was executed by Mach stem, formed in high explosive charge that was preliminary compressed by advanced wave in ceramic bar. In the original condition the specimen had a typical for low carbon steel ferrite-pearlite structure. Metallographic analysis has shown that during the process of the explosive loading the following structural changes took place: formation of numerous deformation twins in both ferrite grains and pearlite colonies (i.e. in two-phase structure); formation of extended bands of localized deformation, which are not crystallographically connected with the original ferrite-pearlite structure; fine grains formation in zones of severe plastic flow. The size of the ferrite grains is by an order of magnitude less than the original grains size. According to the authors’ opinion, above-noted structural peculiarities demonstrate that loading conditions achieved in the current loading scheme differ from common. The phenomenon of non-typical twinning in heterogeneous structure (pearlite) indirectly evidences that extremely high stresses and strain rates took place in the specimen during the loading.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3