Appearance of Non-Equilibrium α-Aluminum Grains in Hypereutectic Al-Si Alloy through Sono-Solidification

Author:

Tsunekawa Yoshiki1,Taga Kanako1,Fukui Yuta1,Okumiya Masahiro1

Affiliation:

1. Toyota Technological Institute

Abstract

Ultrasonic vibration has been applied to various molten metal processes owing to the functions of (a) improvement in wettability, (b) liquid adhesion at a vibrating end surface and (c) sono-solidification such as grain refinement. The present study is focused on the sono-solidification with acoustic cavitaion in hypereutectic Al-18mass%Si alloy. There appears an equilibrium microstructure composed of primary silicon and coupled eutectic -Al/Si phases in Al-18mass%Si alloy, however, non-equilibrium -Al grains develop along with the equilibrium phases through the sono-solidification. During the sono-solidification of Al-18mass%Si alloy, non-equilibrium -Al grains are recognized in the molten metal close to the ultrasonic radiator just before reaching the eutectic temperature of 577 oC in addition to the refined primary silicon particles. The appearance of -Al grains is understood through acoustic cavitation: ultrasound in molten Al-Si alloys exhibits two outstanding behaviors of cavitation bubbling and acoustic streaming. Firstly the de-coupled eutectic reaction, which is recognized in the solidified eutectic Al-Si alloy with severe stirring, causes divorced -Al grains by the acoustic streaming with cavitation. Secondly it is expected that high pressure of over 1 GPa generated by the collapse of cavitaion babbles leads to not only an increase in the eutectic temperature, but also higher silicon content at the eutectic point in Al-Si alloy. Consequently, non-equilibrium -Al grains are nucleated at collapsed cavitaion bubble sites, and they are characterized by higher silicon content compared with that of primary -Al grains in hypoeutectic Al-7masst%Si alloy.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3