The Structure and its Dependence on the Magnetic Properties of Ni5CoXCu95-X Alloys Produced by Mechanical Alloying and Subsequent Annealing

Author:

López Marta1,Gómez M. Elena2,Reyes David2,Ramam K.1,Mangalaraja Ramalinga V.1,Prieto Pedro3,Jiménez José A.4

Affiliation:

1. Universidad de Concepción

2. Universidad del Valle

3. Centro de Excelencia en Nuevos Materiales (CENM)

4. Centro Nacional de Investigacionas (CENIM)

Abstract

Lower energy-ball milling was used to prepare magnetic granular Ni5CoXCu95-X alloys produced by mechanical alloying through a milling process and subsequent annealing process, have been investigated. The pure copper shows high electrical conductivity and malleability, however the Cu-Co system in the thermodynamic equilibrium is non-soluble below 500°C. Nevertheless, mechanical alloyed particles of Cu with 5-7%Co and 5%Ni can be subjected to annealing at 500°C or consolidation-sintering treatments to obtain composite materials thereby improving their mechanical and magnetic properties suitable for electronic devices. The ultrafine Co and (Co,Ni) particles reduced and dispersed in the copper powder matrix with milling times of 20 to 60 h and thus affected the magnetic properties of the as-milled Ni5CoXCu95-X powder obtained from this non-equilibrium phases synthesis. The magnetic properties of the supersaturated solid solutions are strongly dependent on the interactions among the magnetic particles and the nanometric size of these particles. The morphology, structure and size of as-milled and sintered powders were characterized by SEM, HRTEM and XRD techniques. The results show that the microstructure, hardness and magnetic properties of the granular Ni5CoXCu95-X alloy have strong dependence of milling time. The continuous decrement of Ms as a function of milling time is a consequence to the variation of phase in the composition with formation of CoNi particle and the partial change of fcc-Co to hcp-Co. Super-paramagnetic behavior is observed in both as-milled and annealed powders, with a maximum Hc of 250-260 Oe obtained for 7%Co after 60h of milling. The effect of Nickel on the Ni5CoXCu95-X can be explained as Ni content inhibit the two-solid (Cu-Co) phases segregation of the alloys when annealed at high temperature, leading to a grained structure with precipitated Co particles in homogeneous Cu-Ni strengthened solid solution matrix.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3