Development of Ceramic Cutting Tools for Future Application on Dry Machining

Author:

Silva Olivério Moreira Macedo1,Souza José Vitor C.2,Nono Maria do Carmo de Andrade3,Martins G.V.2,Ribeiro M.V.4,Machado João Paulo Barros5

Affiliation:

1. CTA-IAE/AMR

2. Instituto Nacional de Pesquisas Espaciais-INPE

3. National Instiute for Space Research

4. FEG-UNESP

5. National Institute for Space Research – INPE

Abstract

Advanced ceramic materials constitute a mature technology with a very broad base of current and potential applications and a growing list of material compositions. Within the advanced ceramics category, silicon nitride based ceramics are wear-resistant, corrosion- resistant and lightweight materials, and are superior to many materials with regard to stability in high-temperature environments. Because of this combination the silicon nitride ceramics have an especially high potential to resolve a wide number of machining problems in the industries. Presently the Si3N4 ceramic cutting tool inserts are developed using additives powders that are pressed and sintered in the form of a cutting tool insert at a temperature of 1850 oC using pressureless sintering. The microstructure of the material was observed and analyzed using XRD, SEM, and the mechanical response of this array microstructure was characterized for hardness Vickers and fracture toughness. The results show that Si3N4/20 wt.% (AlN and Y2O3) gives the best balance between hardness Vickers and fracture toughness. The Si3N4/15 wt.% (AlN and Y2O3) composition allows the production of a very fine-grained microstructure with low decreasing of the fracture toughness and increased hardness Vickers. These ceramic cutting tools present adequate characteristics for future application on dry machining.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3