Affiliation:
1. Tongji University
2. Zhenhai Petrochemical Jianan Engineering Co., Ltd.
Abstract
The nanocrystallization kinetics of the Fe81Si3.5B13.5C2amorphous alloy was investigated by differential scanning calorimetry (DSC). The apparent activation energy Ea, as well as the nucleation and growth kinetic parameters has been calculated by Kissinger and Ozawa methods. The changeable activation energy Eawith crystalline fraction α was obtained by the expended Friedman method without assuming the kinetic model function, and the average value of Eawas 364±20 kJ/mol. It was shown that the crystallization mechanism of initial stage (0<α<0.7) of the transformation was bulk crystallization with two and three dimensional nucleation graining growth which was controlled by diffusion. For the middle stage (0.7<α<0.9), the crystallization mechanism is surface crystallization with one dimensional nucleation graining growth at a near-zero nucleation rate. In the final stage(α>0.9),the local Avrami exponents rose anomalously from 1.4 to about 2.0.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science