Effect of Annealing on the Hydrogen Permeation and Mechanical Behaviour of Nb-Ni-Zr Alloy Membranes

Author:

Wong Timothy1,Yu Z.1,Suzuki K.1,Gibson M.A.2,Ishikawa K.3,Aoki K.3

Affiliation:

1. Monash University

2. CSIRO

3. Kitami Institute of Technology

Abstract

Nb/NiZr composite alloy membranes have been reported to have hydrogen permeabilities higher than that of pure Pd. Since the hydrogen permeation behaviour in these composite alloys is highly microstructure sensitive, hydrogen permeability is likely to depend on annealing conditions. This work has looked into the effect of annealing on the hydrogen permeability of as-cast Nb-Ni-Zr alloys with the goal of helping in the advancement of Nb-based alloy membranes as cost-effective alternatives to the Pd-based alloy membranes used for hydrogen purification. Nb-Ni-Zr alloy ingots of different compositions were prepared by argon arc-melting. The samples were vacuum sealed in quartz tubes and annealed isochronally for 1h between 500°C and 900°C. It was found that the samples annealed at 900°C exhibit higher hydrogen permeability than the as-cast samples. However, these samples were found to be less resistant to hydrogen embrittlement and the membrane exhibited cracks after the permeation test. The main mechanical failure mechanism was due to intragranular cracking for the alloys with high Nb content whilst the mechanism was observed to be intergranular cracking for alloys with lower Nb-content. The mode of failure did not change after annealing.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3