Chemistry Control in Electron Beam Deposited Titanium Alloys

Author:

Brice Craig A.1,Rosenberger Brian T.1,Sankaran Sankara N.2,Taminger Karen M.3,Woods Bryan4,Nasserrafi Rahbar4

Affiliation:

1. Lockheed Martin Aeronautics Company

2. Lockheed Martin Information Systems & Global Services

3. National Aeronautics & Space Administration (NASA)

4. Spirit Aerosystems

Abstract

Direct manufacturing of metallic materials has gained widespread interest in the past decade. Of the methods that are currently under evaluation, wire-fed electron beam deposition holds the most promise for producing large-scale titanium parts for aerospace applications [1]. This method provides the cleanest processing environment as the deposition is performed under vacuum. While this environment is beneficial in preventing contamination of the deposit, there is the potential for preferential vaporization of high vapor pressure elements during the deposition process. This can lead to detrimental chemistry variations, which can have negative impacts on physical and mechanical properties. Past experience has shown that deposition of the alloy Ti-6Al-4V using electron beam direct manufacturing can produce material with aluminum content below the specification minimum [2]. As aluminum has a high vapor pressure with respect to titanium and vanadium, it preferentially vaporizes from the molten pool. This aluminum loss scales with the size of the molten pool and thus the chemical content can vary throughout the build. Compensating for this loss is necessary in order to achieve nominal chemistry in the deposited material. This paper examines established processing conditions for direct manufacturing of titanium, quantitatively determines deposited alloy chemistry changes under various conditions, and suggests a feedstock composition that will result in deposited material with nominal Ti-6Al-4V chemistry.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3