Improvement of Drop-Hammer Compression Test for Rubber Material

Author:

Yamashita Minoru1,Sato Yasuhisa2

Affiliation:

1. Gifu University

2. Sato's Office

Abstract

The drop-hammer compression testing method where the stroke is calculated by solving the equation of motions of the drop-hammer and anvil was improved in order to determine the strain-rate dependence of the elastic modulus of rubber material. An additional tool for interrupting the compression was embedded in the apparatus. The tool was a thick washer which informed the time when the prescribed compressive strain was achieved by the sharp increase of compression force. The oscillatory stress-time curve obtained by the load cell was appropriately smoothed employing the method of moving average. The effect of the friction at the interface between the rubber specimen and the tools was properly eliminated by the extrapolating method using the specimens with several variations in heights. The stress-strain relationship was obtained under the dynamic condition. The numerical simulation of impact compression disclosed that the effect of inertia on the deformation pattern was practically small under the experimental condition adopted. Conducting the low-speed compression tests, the dependence in elastic modulus of rubber material on the strain-rate was appropriately determined.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3