The Influence of Cyclic Straining in Torsion on Fatigue Resistance and Torsional Properties of ProTaper NiTi Endodontic Instruments

Author:

Martins Renata de Castro1,Bahia Maria Guiomar de Azevedo1,Buono Vicente Tadeu Lopes1

Affiliation:

1. Universidade Federal de Minas Gerais

Abstract

This study evaluated the influence of cyclic straining in torsion on fatigue resistance and torsional properties of ProTaper (S1, S2, F1, F2, F3) NiTi instruments. The mechanical behavior was evaluated by means of torsion and bending tests, performed according to ISO 3630-1 specification, while the fatigue resistance was evaluated using a bench test device employing an artificial canal with 5mm curvature radius and angle of curvature of 45º. The dimensional aspects, diameter (D3) and cross-sectional area (A3) at 3mm from the tip of the instruments were determined by means of image analysis of optical and scanning electron microscopy (SEM). The surface characteristics of instruments before and after they were submitted to cyclic straining in torsion and the morphological aspects of the fractured surfaces were analyzed by SEM. The maximum torque and the bending moment at 45º were higher for instruments with larger D3 and A3. The F1 and F2 instruments followed the Coffin-Manson’s relation, i.e., their number of cycles to failure (NCF) varied inversely with the strain amplitude. With the exception of S1 and S2 instruments, there was a tendency of decreasing the maximum torque after the instruments have been submitted to cyclic straining in torsion. With the exception of S1 instruments, there was a tendency of decreasing the NCF after torsional cycling. The analyses by SEM showed the presence of longitudinal cracks on the instruments previously cycled in torsion. The morphological aspects of the fractured surfaces of instruments tested in torsion or flexural fatigue did not changed by the cyclic straining in torsion. These changes in mechanical properties with torsional cycling can be related to the generation of imperfections such as longitudinal cracks on the instruments.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3