Comparison of Bonding of Bulk PZT to Silicon by Intermediate Glass Layer and by Intermediate Au Layer

Author:

Sun Jian1,Li Yi Gui2,Liu Jing Quan1,Yang Chun Sheng1,He Dan Nong3,Van Thanh Dau4,Tanaka Katsuhiko5,Sugiyama Susumu5

Affiliation:

1. Shanghai Jiaotong University

2. Shanghai Jiao Tong University

3. National Engineering Research Center for Nanotechnology

4. Ritsumeikan University

5. Rtsumeikan University

Abstract

As an energy conversion material, piezoelectric ceramic lead zirconate titanate (PZT) has been used in a wide range of areas. And a PZT wafer bonding with a silicon wafer technology is a promising method to fabricate micro-sensors and micro-actuators using well-established silicon machining techniques. In order to obtain the excellent piezoelectricity and suitable thickness from the bulk PZT, a method is presented. It is to bond a bulk PZT onto a silicon wafer via an intermediate layer. In this paper, two bonding methods are presented. One is to bond a bulk PZT with a silicon wafer by anodic bonding technique using a thin glass film as the intermediate layer. The other is to bond a bulk PZT with a silicon wafer by eutectic bonding using a thin gold film as the intermediate layer. The glass film is 2µm in thickness, deposited by sputtered method. Anodic bonding conditions are: 0.8MPa in pressure, 500 oC in temperature, 250V in voltage and different bonding time. The bonding strength test shows that the maximum bond strength is 13.93 MPa when the bonding time was 60 min. It is void-free structure in the interface of the PZT-Glass-Si structure. The gold film is 1.6µm in thickness, deposited by evaporation method. The eutectic bonding conditions are: 0.8MPa in pressure, 500 oC in temperature, and different bonding time. The bond strength of the PZT-Au-Si structure was tested and the maximum value was 13.19 MPa when the bonding time was 60 min.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3