Abstract
Undoped high quality polycrystalline diamond films were grown by the microwave plasma chemical vapor deposition (MPCVD) method. The effects of hydrogen plasma treatment and vacuum annealing process on the p-type behavior of diamond films were investigated by the Hall effect method. The sheet carrier concentration increased and the sheet resistivity decreased with the treating time of hydrogen plasma and a stable value was achieved finally. After annealing the samples in vacuum at temperature above 600 °C, the sheet carrier concentration dropped dramatically. The origin of this hydrogen terminated p-type conductive layers is also discussed.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science