Improved Properties of AlON/4H SiC Interface for Passivation Studies

Author:

Wolborski M.1,Martin D.M.2,Bakowski Mietek3,Hallén Anders4,Katardjiev Ilia2

Affiliation:

1. Royal Institute of Technology

2. Uppsala University

3. Acreo AB

4. KTH Royal Institute of Technology

Abstract

Aluminium oxynitride (AlON) films of variable composition were grown by reactive sputter deposition in a N2/O2 ambient at room temperature and studied for device passivation. The films were deposited on Si and 4H-SiC substrates as well as on SiC PiN diodes. The AlON/SiO2/SiC stack provided superior interface properties compared to the AlON/SiC structure. Samples with 8% oxygen content, in the AlON film, and subjected to a UV exposure prior to deposition, exhibited the smallest net positive interface charge. A large net negative interface charge was observed for samples with 10% oxygen content and for the samples with 8% oxygen content and subjected to a RCA1 surface clean, prior to deposition. Diodes passivated with AlON films demonstrated reduced leakage current compared to as-processed diodes.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3