Compatible Coating System to Provide Long-Life and High-Reliability

Author:

Narita Toshio1

Affiliation:

1. Hokkaido University

Abstract

The concept of the diffusion barrier coating system (DBC system) is summarized and the latest results are presented. The DBC system is comprised of alloy substrate/diffusion barrier/Al-reservoir/an external scale. Diffusion flux (JAl) of Al through the barrier layer will be given approximately by JAl = DAl x SAl x (d CAl/d x), where DAl and SAl are the diffusion coefficient and solubility limit of Al in the barrier layer, respectively as well as d CAl / d x is driving force given by the concentration difference across the barrier (d CAl) divided by the thickness of the barrier layer (d x). A slow diffusion flux can be obtained by using low values of DAl, SAl, or (d CAl /d x). Accordingly, a selection of a barrier layer with lower DAl and SAl is essential. A low driving force is also an important factor, and can be achieved by using lower CAl witha constant barrier layer thickness dx. At higher temperatures, however, the barrier layer can react with the alloy substrate and Al-reservoir layer, resulting in gradual degradation of the barrier layer. This means that the thickness dx of the barrier layer tends to decrease and may finally disappear. With decreasing thickness of the diffusion barrier layer, the driving force (dCAl/dx) will increase, and the effectiveness of the barrier layer will be eliminated. Therefore, it is essential to maintain a constant thickness of the barrier layer for long exposure time. Several types of the DBC system are proposed, a single barrier layer and triple-layers with g + g’ and g’ inserted among these barrier layers.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Temperature Oxidation and Coating;Journal of The Surface Finishing Society of Japan;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3