Detection and Quantitative Assessment of Damages in Beam Structures Using Frequency and Stiffness Changes

Author:

Gillich Gilbert Rainer1,Praisach Zeno Iosif1

Affiliation:

1. “Eftimie Murgu” University of Resita

Abstract

This paper is concerned with vibration based non-destructive evaluation of structures, with a focus on quantitative assessment of damage. In previous works, a reliable method to locate open cracks in beams has been proposed and tested using both data from numerical simulations and laboratory experiments. It bases on the fact the natural frequency of a bending vibrations mode attend different changes, depending on the loss of stored energy for the slice on which the damage is located. As bigger the mode shape curvature value on that location, so bigger the loss of stored energy and consequently the natural frequency decrease in that mode. Analyzing the natural frequency changes for a larger series of vibration modes, it’s possible to precisely locate damages. The authors succeed to find a single mathematical relation describing the frequency changes for all bending vibration modes, involving one term defining damage’s location and one defining its depth. While the first term changes for different modes, being defined by the mode shape curvature, the second maintain its value for all modes, being affected just by damage depth. This finding permits decoupling the location issue with that of quantitative assessment of damage. Latest researches, presented in this paper, succeed by finding the relation between the second term of the relation and some mechanical characteristics of the beam, i.e. extending the proposed method by including evaluation of damage severity. The approach is illustrated on a cantilever beam, modeled with 3D elements.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference19 articles.

1. A. Rytter, Vibration based inspection of civil engineering structures. Ph.D. Thesis, Aalborg University, Denmark, (1993).

2. S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Los Alamos national laboratory report, LA-13070-MS. (1996).

3. H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B.R. Nadler, A review of structural health monitoring literature: 1996–2001. Los Alamos national laboratory report, LA-13976-MS. (2003).

4. M.I. Friswell, Damage identification using inverse methods, Phil. Trans. R. Soc. A, 365 (2007) 393–410.

5. C.P. Fritzen, Vibration-Based Techniques for Structural Health Monitoring, in: D. Balageas, C.P. Fritzen, A. Güemes (Eds. ), Structural Health Monitoring, ISTE, London, 2006, pp.45-224.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3