Affiliation:
1. AGH University of Science and Technology
2. University of Bristol
3. Greenwich University
Abstract
This paper demonstrates impact damage detection in a composite sandwich panel. The panel is built from a chiral honeycomb and two composite skins. Chiral structures are a subset of auxetic solids exhibiting counterintuitive deformation mechanism and rotative but not reflective symmetry. Damage detection is performed using nonlinear acoustics,involves combined vibro-acoustic interaction of high-frequency ultrasonic wave and low-frequency vibration excitation. High-and low-frequency excitations are introduced to the panel using a low-profile piezoceramic transducer and an electromagnetic shaker, respectively. Vibro-acoustic modulated responses are measured using laser vibrometry. The methods used for impact damage detection clearly reveal de-bonding in the composite panel. The high-frequency weak ultrasonic wave is also modulated by the low-frequency strong vibration wave when nonlinear acoustics is used for damage detection. As a result frequency sidebands can be observed around the main acoustic harmonic in the spectrum of the ultrasonic signal.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献